
Parallel Distributed Grammar Engineering for Practical Applications

Stephan Oepen�, Emily M. Bender�, Uli Callmeier~, Dan Flickinger�~, Melanie Siegel|

�CSLI Stanford ~YY Technologies |DFKI GmbH

Stanford (CA) Mountain View (CA) Saarbrücken (Germany)
8

<

:

oe

bender

dan

9

=

;

@csli.stanford.edu

�

uc

dan

�

@yy.com siegel@dfki.de

Abstract

Based on a detailed case study of paral-
lel grammar development distributed across
two sites, we review some of the require-
ments for regression testing in grammar en-
gineering, summarize our approach to sys-
tematic competence and performance profil-

ing, and discuss our experience with gram-
mar development for a commercial applica-
tion. If possible, the workshop presentation
will be organized around a software demon-
stration.

1 Background

The production of large-scale constraint-based

grammars and suitable processing environments is

a labour- and time-intensive process that, maybe,

has become somewhat of a growth industry over

the past few years, as companies explore products

that incorporate grammar-based language process-

ing. Many broad-coverage grammars have been

developed over several years, sometimes decades,

typically coordinated by a single grammarian who

would often draw on additional contributors (e.g.

the three HPSG implementations developed as part

of the VerbMobil effort, see Flickinger, Copes-

take, & Sag, 2000, Müller & Kasper, 2000, and

Siegel, 2000; or the LFG implementations devel-

oped within the ParGram consortium, Butt, King,

Niño, & Segond, 1999).

More recently, we also find genuinely shared

and distributed development of broad-coverage

grammars, and we will use one such initiative as an

example—viz. an open-source HPSG implementa-

tion for Japanese jointly developed between DFKI

Saarbrücken (Germany) and YY Technologies

(Mountain View, CA)—to demonstrate the techno-

logical and methodological challenges present in

distributed grammar and system engineering.

2 Parallel Distributed Grammar
Development—A Case Study

The Japanese grammar builds on earlier work per-

formed jointly between DFKI and the Computa-

tional Linguistics Department at Saarland Univer-

sity (Germany) within VerbMobil; much like for

the German VerbMobil grammar, two people were

contributing to the grammar in parallel, one build-

ing out syntactic analyses, the other charged with

integrating semantic composition into the syntax.

This relatively strict separation of responsibilities

mostly enabled grammarians to serialize incre-

mental development of the resource: the syntacti-

cian would supply a grammar with extended cov-

erage to the semanticist and, at the onset of the fol-

lowing iteration, start subsequent work on syntax

from the revised grammar.

In the DFKI – YY cooperation the situation was

quite different. Over a period of eight months,

both partners had a grammarian working on syn-

tax and semantics simultaneously on a day-to-

day basis; both grammarians were submitting

changes to a joint, version-controlled source repos-

itory and usually would start the work day by re-

trieving the most recent revisions. At the same

time, product building and the development of

so-called ‘domain libraries’ (structured collections

of knowledge about a specific domain that is in-

stantiated from semantic representations delivered

from grammatical analysis) at YY already incorpo-

rated the grammar and depended on it for actual,

customer-specific contracts. Due to a continuous

demand for improvements in coverage and analy-

sis accuracy, the grammar used in the main product

line would be updated from the current develop-

ment version about once or twice a week. Parallel

to work on the Japanese grammar (and simultane-

ous work on grammars for English and Spanish),

both the grammar development environment (the



open-source LKB system; Copestake, 2002) and

the HPSG run-time component powering the YY

linguistic analysis engine (the open-source PET

parser; Callmeier, 2002) continued to evolve, as

did the YY-proprietary mapping of meaning repre-

sentations extracted from the HPSG grammars into

domain knowledge—all central parts of a complex

system of interacting components and constraints.

As has been argued before (see, for exam-

ple, Oepen & Flickinger, 1998), the nature of a

large-scale constraint-based grammar and the sub-

tle interactions of lexical and constructional con-

straints make it virtually impossible to predict how

a change in one part of the grammar affects over-

all system behaviour. A relatively minor repair in

one lexical class, numeral adjectives as in ‘three

books were ordered’ for instance, will have the po-

tential of breaking the interaction of that class with

the construction deriving named (numeric) entities

from a numeral (e.g. as in ‘three is my favourite

number’) or the partitive construction (e.g. as in

‘three have arrived already’). A ripple effect of

a single change can thus corrupt the semantics

produced for any of these cases and in the con-

sequence cause failure or incorrect behaviour in

the back-end system. In addition to these qual-

ity assurance requirements on grammatical cover-

age and correctness, the YY application (like most

applications for grammar-based linguistic analy-

sis) utilizes a set of hand-constructed parse rank-

ing heuristics that enables the parser to operate

in best-first search mode and to return only one

reading, i.e. the analysis that is ranked best by the

heuristic component. The parse ranking machin-

ery builds on preferences that are associated with

individual or classes of lexical items and construc-

tions. The set of preferences is maintained in par-

allel to the grammar, in a sense providing a layer

of performance-oriented annotations over the basic

building blocks of the core competence grammar.

Without discussing the details of the parse ranking

approach, it creates an additional element of un-

certainty in assessing grammar changes: since the

preference for a specific analysis results implic-

itly from a series of local preferences (of lexical

items and constructions contributing to the com-

plete derivation), introducing additional elements

(i.e. new local or global ambiguity) into the search

space and subjecting them to the partial ordering

can quickly skew the overall result.

Summing up, the grammar and application engi-

neering example presented here illustrates a num-

ber of highly typical requirements on the engi-

neering environment. First, all grammarians and

system engineers participating in the development

process need to keep frequent, detailed, and accu-

rate records of a large number of relevant parame-

ters, including but not limited to grammatical cov-

erage, correctness of syntactic analyses and cor-

responding semantic forms, parse selection accu-

racy, and overall system performance. Second, as

modifications to the system as a whole are made

daily—and sometimes several times each day—all

developers must be able to assess the impact of

recent changes and track their effects on all rele-

vant parameters; gathering the data and analyzing

it must be simple, fast, and automated as much as

possible. Third, not all modifications (to the gram-

mar or underlying software) will result in ‘mono-

tonic’ or backwards-compatible effects. A change

in the treatment of optional nominal complements,

for example, may affect virtually all derivation

trees and render a comparison of results at this

level uninformative. At the same time, a primarily

syntactic change of this nature will not cause an ef-

fect in associated meaning representations, so that

a semantic equivalence test over analyses should

be expected to yield an exact match to earlier re-

sults. Hence, the machinery for representation and

comparison of relevant parameters needs to facil-

itate user-level specification of informative tests

and evolution criteria. Finally, the metrics used in

tracking grammar development cannot be isolated

from measurements of system resource consump-

tion and overall performance (specific properties

of a grammar may trigger idiosyncrasies or soft-

ware bugs in a particular version of the process-

ing system); therefore, and to enable exchange of

reference points and comparability of experiments,

grammarians and system developers alike should

use the same, homogenuous set of relevant param-

eters.

3 Integrated Competence and
Performance Profiling

The integrated competence and performance pro-

filing methodology and associated engineering

platform, dubbed [incr tsdb()] (Oepen & Callmeier,

2000)1 and reviewed in the remainder of this sec-

1See ‘http://www.coli.uni-sb.de/itsdb/’

for the (draft) [incr tsdb()] user manual, pronunciation rules,

and instructions on obtaining and installing the package.



tion, was designed to meet all of the requirements

identified in the DFKI – YY case study. Generally

speaking, the [incr tsdb()] environment is an in-

tegrated package for diagnostics, evaluation, and

benchmarking in practical grammar and system

engineering. The toolkit implements an approach

to grammar development and system optimization

that builds on precise empirical data and system-

atic experimentation, as it has been advocated by,

among others, Erbach & Uszkoreit (1990), Erbach

(1991), and Carroll (1994). [incr tsdb()] has been

integrated with, as of June 2002, nine different

constraint-based grammar development and pars-

ing systems (including both environments in use at

YY, i.e. the LKB and PET), thus providing a pre-

standard reference point for a relatively large (and

growing) community of NLP developers. The [incr

tsdb()] environment builds on the following com-

ponents and modules:

� test and reference data stored with annota-

tions in a structured database; annotations

can range from minimal information (unique

test item identifier, item origin, length et al.)

to fine-grained linguistic classifications (e.g.

regarding grammaticality and linguistic phe-

nomena presented in an item), as they are rep-

resented in the TSNLP test suites, for example

(Oepen, Netter, & Klein, 1997);

� tools to browse the available data, identify

suitable subsets and feed them through the

analysis component of processing systems

like the LKB and PET, LiLFeS (Makino,

Yoshida, Torisawa, & Tsujii, 1998), TRALE

(Penn, 2000), PAGE (Uszkoreit et al., 1994),

and others;

� the ability to gather a multitude of precise and

fine-grained (grammar) competence and (sys-

tem) performance measures—like the num-

ber of readings obtained per test item, various

time and memory usage statistics, ambigu-

ity and non-determinism metrics, and salient

properties of the result structures—and store

them in a uniform, platform-independent data

format as a competence and performance pro-

file; and

� graphical facilities to inspect the resulting

profiles, analyze system competence (i.e.

grammatical coverage and overgeneration)

and performance (e.g. cpu time and memory

usage, parser search space, constraint solver
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Figure 1: Rough sketch of [incr tsdb()] architec-

ture: the core engine comprises the database man-

agement, batch control and statistics component,

and the user interface.

workload, and others) at variable granulari-

ties, aggregate, correlate, and visualize the

data, and compare among profiles obtained

from previous grammar or system versions or

other processing environments.

As it is depicted in Figure 1, the [incr tsdb()]

architecture can be broken down into three major

parts: (i) the underlying database management sys-

tem (DBMS), (ii) the batch control and statistics

kernel (providing a C and Lisp application pro-

gram interface to client systems that can be dis-

tributed across the network), and (iii) the graphi-

cal user interface (GUI). Although, historically, the

DBMS was developed independently and the ker-

nel can be operated without the GUI, the full func-

tionality of the integrated competence and perfor-

mance laboratory—as demonstrated below—only

emerges from the combination of all three com-

ponents. Likewise, the flexibility of a clearly de-

fined API to client systems and its ability to par-

allelize batch processing and distribute test runs

across the network have greatly contributed to the

success of the package. The following paragraphs

review some of the fundamental aspects in more

detail, sketch essential functionality, and comment

on how they have been exploited in the DFKI – YY

cooperation.

Abstraction over Processors The [incr tsdb()]

environment, by virtue of its generalized pro-

file format, abstracts over specific processing en-

vironments. While grammar engineers in the

DFKI – YY collaboration regularly use both the

LKB (primarily for interactive development) and

PET (mostly for batch testing and the assessment



of results obtained in the YY production envi-

ronment), usage of the [incr tsdb()] profile anal-

ysis routines in most aspects hides the specifics

of the token processor used in obtaining a profile.

Both platforms interprete the same typed feature

structure formalism, load the same set of gram-

mar source files, and (unless malfunctioning) pro-

duce equivalent results. Using [incr tsdb()], gram-

marians can obtain summary views of grammati-

cal coverage and overgeneration, inspect relevant

subsets of the available data, break down analysis

views according to various aggregation schemes,

and zoom in on specific aggregates or individual

test items as appropriate. Moreover, processing

results obtained from the (far more efficient) PET

parser (that has no visualization or debugging sup-

port built in), once recorded as an [incr tsdb()] pro-

file, can be used in conjunction with the LKB (con-

tingent on the use of identical grammars), thereby

facilitating graphical inspection of parse trees and

semantic formulae.

Parallelization of Test Runs The [incr tsdb()] ar-

chitecture (see Figure 1) separates the batch con-

trol and statistics kernel from what is referred to

as client processors (i.e. parsing systems like the

LKB or PET) through an application program inter-

face (API) and the Parallel Virtual Machine (PVM;

Geist, Bequelin, Dongarra, Manchek, & Sun-

deram, 1994) message-passing protocol layer. The

use of PVM—in connection with task scheduling,

error recovery, and roll-over facilities in the [incr

tsdb()] kernel—enables developers to transparently

parallelize and distribute execution of batch pro-

cessing. At YY, grammarians had a cluster of net-

worked Linux compute servers configured as a sin-

gle PVM instance, so that execution of a test run—

using the efficient PET run-time engine—could be

completed as a matter of a few seconds. The com-

bination of near-instantaneous profile creation and

[incr tsdb()] facilities for quick, semi-automated as-

sessment of relevant changes (see below) enabled

developers to pursue a strongly empiricist style of

grammar engineering, assessing changes and their

effects on actual system behavior in small incre-

ments (often many times per hour).

Structured Comparison One of the facilities

that has proven particularly useful in the dis-

tributed grammar engineering setup outlined in

Section 2 above is the flexible comparison of com-

petence and performance profiles. The [incr tsdb()]

package eases comparison of results on a per-

item basis, using an approach similar to Un�x

diff(1), but generalized for structured data sets.

By selection of a set of parameters for intersec-

tion (and optionally a comparison predicate), the

user interface allows browsing the subset of test

items (and associated results) that fail to match

in the selected properties. One dimension that

grammarians found especially useful in intersect-

ing profiles is on the number of readings assigned

per item—detecting where coverage was lost or

added—and on derivation trees (bracketed struc-

tures labeled with rule names and identifiers of lex-

ical items) associated with each parser analysis—

assessing where analyses have changed. Addition-

ally, using a user-supplied equivalence predicate,

the same technique was regularly used at YY to

track the evolution of meaning representations (as

they form the interface from linguistic analysis into

the back-end knowledge processing engine), both

for all readings and the analysis ranked best by the

parse selection heuristics.

Zooming and Interactive Debugging In

analysing a new competence and performance

profile, grammarians typically start from summary

views (overall grammatical coverage, say), then

single out relevant (or suspicious) subsets of

profile data, and often end up zooming in to

the level of individual test items. For most [incr

tsdb()] analysis views the ‘success’ criteria can be

varied according to user decisions: in assessing

grammatical coverage, for example, the scoring

function can refer to virtually arbitrary profile

elements—ranging from the most basic coverage

measure (assigning at least one reading) to more

refined or application-specific metrics, the produc-

tion of a well-formed meaning representation, say.

Although the general approach allows output an-

notations on the test data (full or partial constituent

structure descriptions, for example), developers so

far have found the incremental, semi-automated

comparison against earlier results a more adequate

means of regression testing. It would appear

that, especially in an application-driven and

tightly scheduled engineering situation like the

DFKI – YY partnership, the pace of evolution

and general lack of locality in changes (see the

examples discussed in Section 2) precludes the

construction of a static, ‘gold-standard’ target for

comparison. Instead, the structured comparison

facilities of [incr tsdb()] enable developers to

incrementally approximate target results and, even
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Figure 2: Evolution of grammatical coverage and average ambiguity (number of readings per test item) over

a five-month period; ‘banking’ and ‘trading’ are two data sets (of some 700 and 400 sentences, respectively)

of domain data.

in a highly dynamic environment where grammar

and processing environment evolve in parallel,

track changes and identify regression with great

confidence.

4 Looking Back—Quantifying Evolution

Over time, the [incr tsdb()] profile storage accu-

mulates precise data on the grammar development

process. Figure 2 summarizes two aspects of

grammatical evolution compiled over a five-month

period (and representing some 130 profiles that

grammarians put aside for future reference): gram-

matical coverage over two representative samples

of customer data—one for an on-line banking ap-

plication, the other from an electronic stock trad-

ing domain—is contrasted with the development

of global ambiguity (i.e. the average number of

analyses assinged to each test item). As should

be expected, grammatical coverage on both data

sets increases significantly as grammar develop-

ment focuses on these domains (‘banking’ for the

first three months, ‘trading’ from there on). While

the collection of available profiles, apparently, in-

cludes a number of data points corresponding to

‘failed’ experiments (fairly dramatic losses in cov-

erage), the larger picture shows mostly monotonic

improvement in coverage. As a control experi-

ment, the coverage graph includes another data

point for the ‘banking’ data towards the end of the

reporting period. Two months of focussed devel-

opment on the ‘trading’ domain have not nega-

tively affected grammatical coverage on the data

set used earlier. Corresponding to the (desirable)

increase in coverage, the graph on the right of Fig-

ure 2 depicts the evolution of grammatical ambi-

guity. As hand-built linguistic grammars put great

emphasis on the precision of grammatical analy-

sis and the exclusion of ungrammatical input, the

overall average of readings assigned to each sen-

tence varies around relatively small numbers. For

the moderately complex email data2 the grammar

often assigns less than ten analyses, rarely more

than a few dozens. However, not surprisingly

the addition of grammatical coverage comes with

a sharp increase in ambiguity (which may indi-

cate overgeneration): the graphs in Figure 2 clearly

show that, once coverage on the ‘trading’ data was

above eighty per cent, grammarians shifted their

engineering focus on ‘tightening’ the grammar, i.e.

the elimination of spurious ambiguity and overgen-

eration (see Siegel & Bender, 2002, for details on

the grammar).

Another view on grammar evolution is pre-

sented in Figure 3, depicting the ‘size’ of the

Japanese grammar over the same five-month de-

velopment cycle. Although measuring the size of

2Quantifying input complexity for Japanese is a non-

trivial task, as the count of the number of input words would

depend on the approach to string segmentation used in a spe-

cific system (the fairly aggressive tokenizer of ChaSen, Asa-

hara & Matsumoto, 2000, in our case); to avoid potential for

confusion, we report input complexity in the (overtly system-

specific) number of lexical items stipulated by the grammar

instead: around 50 and 80, on average, for the ‘banking’ and

‘trading’ data sets, respectively (as of February 2002).
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Figure 3: Evolution of grammar size (in the num-

bers of types, plotted against the left axis, and

grammar rules, plotted against the right axis) over

a five-month period.

computational grammars is a difficult challenge,

for the HPSG framework two metrics suggest them-

selves: the number of types (i.e. the size of the

grammatical ontology) and the number of gram-

mar rules (i.e. the inventory of construction types).

As would be expected, both numbers increase

more or less monotonically over the reporting pe-

riod, where the shift of focus from the ‘banking’

into the ‘trading’ domain is marked with a sharp

increase in (primarily lexical) types. Contrasted

to the significant gains in grammatical coverage

(a relative improvement of more than seventy per

cent on the ‘banking’ data), the increase in gram-

mar size is moderate, though: around fifteen and

twenty per cent in the number of types and rules,

respectively.

5 Conclusions

At YY and cooperating partners (primarily DFKI

Saarbrücken and CSLI Stanford), grammarians

(for all languages) as well as developers of both the

grammar development tools and of the production

system all used the competence and performance

profiling environment as part of their daily engi-

neering toolbox. The combination of [incr tsdb()]

facilities to parallelize test run processing and a

break-through in client system efficiency (using

the PET parser; Callmeier, 2002) has created an ex-

perimental development environment where gram-

marians can obtain near-instantaneous feedback on

the effects of changes they explore.

For the Japanese grammar specifically, the

grammar developers at both ends would typically

spend the first ten to twenty minutes of the day ob-

taining fresh profiles for a number of shared test

sets and diagnostic corpora, thereby assessing the

most recent set of changes through empirical anal-

ysis of their effects. In conjunction with a certain

rigor in documentation and communication, it was

the ability of both partners to regularly, quickly,

and semi-automatically monitor the evolution of

the joint resource with great confidence that has

enabled truly parallel development of a single,

shared HPSG grammar across continents. Within

a relatively short time, the partners succeeded

in adapting an existing grammar to a new genre

(email rather than spoken language) and domain

(customer service requests rather than appointment

scheduling), greatly extending grammatical cov-

erage (from initially around forty to above ninety

per cent on representative customer corpora), and

incorporating the grammar-based analysis engine

into a commercial product. And even though in

February 2002, for business reasons, YY decided

to reorganize grammar development for Japanese,

the distributed, parallel grammar development ef-

fort positively demonstrates that methodological

and technological advances in constraint-based

grammar engineering have enabled commercial

development and deployment of broad-coverage

HPSG implementations, a paradigm that until re-

cently was often believed to still lack the maturity

for real-world applications.
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